クーロンの法則

スポンサーリンク
二つの電荷 電気
この記事は約2分で読めます。

クーロンの法則は電荷間に働く静電力を示した法則です。

  • 同符号の電荷同士では反発し、異なる符号の電荷同士では引き付け合う
  • 静電力は電荷の積に比例し、距離の二乗に反比例する

二つの電荷が引き合う(反発しあう)力を静電力またはクーロン力といいます。

[mathjax]

$$ 静電力=\frac{(Q_a)\times(Q_b)}{4πr^2ε_0}$$

式に表すとこのように表現されます。

スポンサーリンク

電荷とは

帯電した物体を帯電体といいます。

帯電体の持つ電気量を電荷といい、プラスの正電荷とマイナスの負電荷があります。

電荷の持つ電気量の単位がクーロン[C]が使われます。記号はQで表されます。

スポンサーリンク

クーロンの法則

二つの電荷

プラス(Q)とマイナス(-Q)の二つの電荷があります。
電荷を一つの点にみなしてよい場合、点電荷といいます。

二つの点電荷はプラスとマイナスの電荷、異なる符号なのでお互いに引き寄せ合います。
この二つの電荷が同じ符号の場合は反発しあいます。

この電荷が大きいほど引き合う力は強くなり、距離が近いほど力が強くなります。

二つの電荷間に発生する力は電荷同士を結ぶ直線上に沿って働きます。

電荷量の単位は[C]クーロン、記号はQで表されます。
Q[C]と表記されます。

クーロンの法則
  1. 二つの電荷間には静電力Fが働く
  2. 電荷が同じ符号には反発力、異なる符号の時には吸引力が発生する
  3. 力の向きは電荷同士を結んだ直線状に沿う
  4. 力の大きさは二つの電荷の積に比例し。距離の二乗に反比例する。
スポンサーリンク

静電力の大きさを求める公式

二つの電荷が距離rの距離にある時に発生する静電力は
$$ 静電力=k\times\frac{(Q_a)\times(Q_b)}{r^2}$$
kは比例定数なので条件下で一定の数値となります
$$ k=\frac{1}{4πε_0}=およそ9\times10^9$$
$ε_0=8.85\times10^{-12}$は真空中の誘電率です。
円周率と誘電率を代入して計算するとおよそ$$9\times10^9$$になります。

比例定数kに代入して変形すると

$$ 静電力=\frac{(Q_a)\times(Q_b)}{4πr^2ε_0}$$

と表せます。

 

コメント